复习是为了更好的与高考考试考试大纲相结合,特别水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提高能力,填补常识、技能的空白。智学网高中三年级频道为你整理了《高三必学三数学要点复习》帮你金榜题名!
1.高三必学三数学要点复习
概念:
形如y=x^a的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
概念域和值域:
当a为不一样的数值时,幂函数的概念域的不同状况如下:假如a为任意实数,则函数的概念域为大于0的所有实数;假如a为负数,则x一定不可以为0,不过这个时候函数的概念域还需要根[据q的奇偶性来确定,即假如同时q为偶数,则x不可以小于0,这个时候函数的概念域为大于0的所有实数;假如同时q为奇数,则函数的概念域为不等于0的所有实数。当x为不一样的数值时,幂函数的值域的不同状况如下:在x大于0时,函数的值域一直大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。
性质:
对于a的取值为非零有理数,有必要分成几种状况来讨论各自的特质:
第一大家了解假如a=p/q,q和p都是整数,则x^=q次根号,假如q是奇数,函数的概念域是R,假如q是偶数,函数的概念域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/,显然x≠0,函数的概念域是∪.因此可以看到x所遭到的限制源自两点,一是大概作为分母而不可以是0,一是大概在偶数次的根号下而不可以为负数,那样大家就能了解:
排除去为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除去为0这种可能,即对于x
排除去为负数这种可能,即对于x为大于且等于0的所有实数,a就不可以是负数。
2.高三必学三数学要点复习
1.概念:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一块,就组成了一元一次不等式组。
b.一元一次不等式组中每个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考试知识点:
①解一元一次不等式
②依据具体问题中的数目关系列不等式并解决简单实质问题
③用数轴表示一元一次不等式的解集
3.高三必学三数学要点复习
导数第肯定义
设函数y=f在点x0的某个范围内有概念,当自变量x在x0处有增量△x时,相应地函数获得增量△y=f-f;假如△y与△x之比当△x→0时极限存在,则称函数y=f在点x0处可导,并称这个极限值为函数y=f在点x0处的导数记为f',即导数第肯定义
导数第二概念
设函数y=f在点x0的某个范围内有概念,当自变量x在x0处有变化△x时,相应地函数变化△y=f-f;假如△y与△x之比当△x→0时极限存在,则称函数y=f在点x0处可导,并称这个极限值为函数y=f在点x0处的导数记为f',即导数第二概念
导函数与导数
假如函数y=f在开区间I内每一点都可导,就称函数f在区间I内可导。这个时候函数y=f对于区间I内的每个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f的导函数,记作y',f',dy/dx,df/dx。导函数简称导数。
单调性及其应用
1.借助导数研究多项式函数单调性的一般步骤
求f¢
确定f¢在内符号若f¢>0在上恒成立,则f在上是增函数;若f¢<0在上恒成立,则f在上是减函数
2.用导数求多项式函数单调区间的一般步骤
求f¢
f¢>0的解集与概念域的交集的对应区间为增区间;f¢<0的解集与定义域的交集的对应区间为减区间
4.高三必学三数学要点复习
空间中的垂直关系
1、直线与平面垂直
概念:直线与平面内任意一条直线都垂直
断定:假如一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直
性质:垂直于同一直线的两平面平行
推论:假如在两条平行直线中,有一条垂直于一个平面,那样另一条也垂直于这个平面
直线和平面所成的角:度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度
2、平面与平面垂直
概念:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)
断定:一个平面过另一个平面的垂线,则这两个平面垂直
性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
5.高三必学三数学要点复习
空间两条直线只有三种地方关系:平行、相交、异面
1、按是不是共面可分为两类:
共面:平行、相交
异面:
异面直线的概念:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线断定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为esp.空间向量法
两异面直线间距离:公垂线段esp.空间向量法
2、若从有无公共点的角度看可分为两类:
有且仅有一个公共点——相交直线;
没公共点——平行或异面
直线和平面的地方关系:
直线和平面只有三种地方关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。