高三必学三数学要点复习

点击数:578 | 发布时间:2025-01-19 | 来源:www.jxpmhh.com

    复习是为了更好的与高考考试考试大纲相结合,特别水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提高能力,填补常识、技能的空白。智学网高中三年级频道为你整理了《高三必学三数学要点复习》帮你金榜题名!

    1.高三必学三数学要点复习


    概念:

    形如y=x^a的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

    概念域和值域:

    当a为不一样的数值时,幂函数的概念域的不同状况如下:假如a为任意实数,则函数的概念域为大于0的所有实数;假如a为负数,则x一定不可以为0,不过这个时候函数的概念域还需要根[据q的奇偶性来确定,即假如同时q为偶数,则x不可以小于0,这个时候函数的概念域为大于0的所有实数;假如同时q为奇数,则函数的概念域为不等于0的所有实数。当x为不一样的数值时,幂函数的值域的不同状况如下:在x大于0时,函数的值域一直大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

    性质:

    对于a的取值为非零有理数,有必要分成几种状况来讨论各自的特质:

    第一大家了解假如a=p/q,q和p都是整数,则x^=q次根号,假如q是奇数,函数的概念域是R,假如q是偶数,函数的概念域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/,显然x≠0,函数的概念域是∪.因此可以看到x所遭到的限制源自两点,一是大概作为分母而不可以是0,一是大概在偶数次的根号下而不可以为负数,那样大家就能了解:

    排除去为0与负数两种可能,即对于x>0,则a可以是任意实数;

    排除去为0这种可能,即对于x

    排除去为负数这种可能,即对于x为大于且等于0的所有实数,a就不可以是负数。

    2.高三必学三数学要点复习


    1.概念:

    用符号〉,=,〈号连接的式子叫不等式。

    2.性质:

    ①不等式的两边都加上或减去同一个整式,不等号方向不变。

    ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

    ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

    3.分类:

    ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

    ②一元一次不等式组:

    a.关于同一个未知数的几个一元一次不等式合在一块,就组成了一元一次不等式组。

    b.一元一次不等式组中每个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

    4.考试知识点:

    ①解一元一次不等式

    ②依据具体问题中的数目关系列不等式并解决简单实质问题

    ③用数轴表示一元一次不等式的解集

    3.高三必学三数学要点复习


    导数第肯定义

    设函数y=f在点x0的某个范围内有概念,当自变量x在x0处有增量△x时,相应地函数获得增量△y=f-f;假如△y与△x之比当△x→0时极限存在,则称函数y=f在点x0处可导,并称这个极限值为函数y=f在点x0处的导数记为f',即导数第肯定义

    导数第二概念

    设函数y=f在点x0的某个范围内有概念,当自变量x在x0处有变化△x时,相应地函数变化△y=f-f;假如△y与△x之比当△x→0时极限存在,则称函数y=f在点x0处可导,并称这个极限值为函数y=f在点x0处的导数记为f',即导数第二概念

    导函数与导数

    假如函数y=f在开区间I内每一点都可导,就称函数f在区间I内可导。这个时候函数y=f对于区间I内的每个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f的导函数,记作y',f',dy/dx,df/dx。导函数简称导数。

    单调性及其应用

    1.借助导数研究多项式函数单调性的一般步骤

    求f¢

    确定f¢在内符号若f¢>0在上恒成立,则f在上是增函数;若f¢<0在上恒成立,则f在上是减函数

    2.用导数求多项式函数单调区间的一般步骤

    求f¢

    f¢>0的解集与概念域的交集的对应区间为增区间;f¢<0的解集与定义域的交集的对应区间为减区间

    4.高三必学三数学要点复习


    空间中的垂直关系

    1、直线与平面垂直

    概念:直线与平面内任意一条直线都垂直

    断定:假如一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

    性质:垂直于同一直线的两平面平行

    推论:假如在两条平行直线中,有一条垂直于一个平面,那样另一条也垂直于这个平面

    直线和平面所成的角:度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

    2、平面与平面垂直

    概念:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

    断定:一个平面过另一个平面的垂线,则这两个平面垂直

    性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

    5.高三必学三数学要点复习


    空间两条直线只有三种地方关系:平行、相交、异面

    1、按是不是共面可分为两类:

    共面:平行、相交

    异面:

    异面直线的概念:不同在任何一个平面内的两条直线或既不平行也不相交。

    异面直线断定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

    两异面直线所成的角:范围为esp.空间向量法

    两异面直线间距离:公垂线段esp.空间向量法

    2、若从有无公共点的角度看可分为两类:

    有且仅有一个公共点——相交直线;

    没公共点——平行或异面

    直线和平面的地方关系:

    直线和平面只有三种地方关系:在平面内、与平面相交、与平面平行

    ①直线在平面内——有无数个公共点

    ②直线和平面相交——有且只有一个公共点

    直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 中国考试人事网(https://www.bzgdwl.com/)
All Rights Reserverd ICP备18037099号-1

  • 中国考试人事网微博

  • 中国考试人事网

首页

财经

建筑

医疗